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OutlineOutline

Quench simulations and 
parametric studies
– Generic HFM quench study:

trends varying field, current …
– VLHC/FNAL magnets
– LHC-2 quad

Thermal stress
– Experiments

• Cables
• racetrack

– Simulations and FE analysis

Nb3Sn main properties
– SC properties
– Quench characteristics & 

Dangers
– Strain dependence

Quench protection
– Methods
– Hot Spot temperature: 

MIIts
– voltage



March 5, 2002 TD/D&T seminar - Linda Imbasciati 3

SC material: NbSC material: Nb33SnSn
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NbTi :NbTi :
• Tevatron: 4.5 T at LHe 
• HERA: 5.5 T at LHe 
• LHC:        8.4 T at HeII

 NbTi Nb3Sn
Tc (K) 9.4 18 
Bc(4.2K) (T) 11 24 
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Stability of NbStability of Nb33SnSn

Nb3sn should be more stable than NbTi: ∆T=∆E/cP

Heat capacity at low temperature (T<< TDebye): cP~T3

Specific Enthalpy 
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Stability of NbStability of Nb33SnSn
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A movement of the order of 1 µm of a wire L= 5 mm, ∅=1mm
(Volume ≅ 4 mm3), in a 10 T field, dissipates
∆E = J B δ Vol ≈ 2·109 10 10-6 4·10-9 = 80 µJ I/Ic<0.9

MQE of Nb3Sn and 
NbTi strands at 8 T, 
4.2 K in “adiabatic”
conditions; 
strand diam. : 1 mm, 
Cu/NCu=1.6 
(from P. Bauer)
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High Field magnetsHigh Field magnets

Magnet parameters VLHC
CC 

VLHC 
cosθ 

LHC 
HGQ-2

LHC 
cosθ 

Bore Field/Peak Field (T) 10/11.3 10/10.5 10/10.3 8.3 
Operating Current (kA) 23.5 21.3 14.5 11.8 

Inductance (mH/m) 3 2.1 4.7 7.4 
Stored Energy (kJ/m) 828 485 489 490 

Length (m) 16 16 6 14.5 
Cable Cross Section (mm2) 23.1 22.5 24.3 25.5 
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The quenchThe quench

Basic process of the quench: Basic process of the quench: 
conversion of stored e.m. energy into heat

The magnitude of quench process is mainly given by : 

conversion of stored e.m. energy into heat

  VLHC  
CC 

VLHC  
cosθ 

LHC  
cosθ 

JCU (A/mm2) 1990 1730 710 
QI(300K) (M A2 s) 40 50 71 

QI(@30ms) (M A2 s) 14 17 4 
 

With no active protection:
ρJCu

2 ≅ 6 10-10Ωm ·109(A/m2)2 = 600 MW/m3
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Cryostat 
top part

He recovery 
lines

Helium Blow off after 8 T Nb3Sn 
magnet quench -NHMFLDangersDangers

Excessive temperature damages 
insulation
Excessive temperature gradients
creates great stresses => critical 
current degradation (Nb3Sn)
Voltage to ground and inside 
winding => short circuit and arching
(Helium gas in straight field has very 
low breakdown voltage)

Helium blow off after quench => 
problem of pressure, especially for 
strings of magnets inside a single 
cryostat
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Protection failures Protection failures –– VoltageVoltage

LHC dipole: Short circuit

Damage caused by a short circuit 
developed during a quench in a LHC 
dipole protype
(From L. Rossi - academic training – Cern)
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Quench protection failureQuench protection failure

RD3 damage
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Quench protection failureQuench protection failure

RD3 damage
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NbNb33Sn strain dependenceSn strain dependence
Bare Nb3Sn filaments break at ~0.2% uniaxial tensile strain.
In composites, the Nb3Sn filaments are under compression at zero 
applied strain (εa=0) due to thermal contraction differences.

applied strain

SC
 c
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Tc
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A. Den Ouden, 
Univ. of Twente

εm

- Ic max for 
εa=εm : intrinsic 
strain minimum
- Irreversible Ic
degradation
starts at higher
tensile εa
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NbNb33Sn Sn IIcc strain dependencestrain dependence

εm

Few data for 
applied 
compressive 
strain, generally 
less critical

Few studies on 
cables: max. 
pressure on broad 
face for 
impregnated 
cables ~150 MPa
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NbNb33Sn quench degradationSn quench degradation

Intrinsic strain factors :

thermal pre-compression

Cable structure (twist, transposition, keystone angle, etc.)

winding after reaction (~ 0.18 % for the CC design)

any applied strain, as pre-stress and Lorentz forces.

strain induced by anisotropic thermal expansion strain induced by anisotropic thermal expansion 
during the quench processduring the quench process
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Quench protection stepsQuench protection steps

1. Quench detection 
fast but reliable

1. Current disconnection 
switch or diode

2. Extract stored energy 
significant for small magnets

3. Spread energy in the coil 
reduces peak T and V
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11-- Quench detection:Quench detection:

Most used for accelerator magnets:

– Voltage taps detecting resistive growth
– Noise rejection with bridge circuit
– Signal processing (software)

Others techniques:

– Quench antenna (inductive signals)
– Temperature sensors (fiber optics) ~1 s
– Microphones
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22-- Current disconnection & Current disconnection & 

– Switch
– PS shut-down
– Extract stored energy into an 

external circuit (dump resistor or 
coupled inductance)

L magnet R quench

R dump

Switch

P.S.

13 kA current breaker for LHC

33-- Stored energy extraction Stored energy extraction 

Vmax= I0 RD

RD chosen to have
Vmax< 1 kV => 

RD is fixed with the 
current, cannot be 
increased with magnet size.
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Quench protection in a stringQuench protection in a string

external thyristors or cold diodes to bypass the quenching magnet
⇒ Two current circuit: 1- Magnet string + dump resistors (τ ~100 s)

2- Quenched magnet + diode (τ ~ 0.1 s)

LHC protection scheme 
(from  F. Rodriguez 
Mateos, CERN)
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44-- Spread energy into the windingSpread energy into the winding

Detector energy 
densities

(well stabilized)

Natural quench propagation – for small magnets
Quench heaters
Use of quench-back (quench induced by fast current decay)
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44-- Spread energy into the windingSpread energy into the winding

Racetrack #2 quench heater

VLHC–CC:

E/M ~ 20 kJ/kg 

⇒ E/V = 120 MJ/m3 

⇒ TMAX = 130 K (=TBULK)

Specific enthalpy
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Hot Spot temperature Hot Spot temperature -- MIItsMIIts

Adiabatic equation => conservative peak temperature estimation
(No heat exchange with Helium ; No heat conduction)

Joule 
heating dT(T)cd)J(ρ(T) P

2 =tt
per unit volume

Temperature
rise

Current 
decay =>

<= Material 
properties∫∫ ==

∞ Tpeak

To

P2

0

2
peak dT

ρ(T)
(T)cAd)(I)QI(T tt

Definition...

The MIIts value is the square current integrated in time. 
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MIItsMIIts –– current decaycurrent decay

∫∫
∞∞

+==
dτ

2
d

2
o

0

2
peak (t)dtIτId)(I)QI(T tt

τd = delay time = quench detection time +
+ quench heaters activation time

After the delay time the current decays:
External dump resistor RD: 

I=Ioe-t/τ , τ=L/RD

With heaters: R=R(T): depends on the normal zone 
volume, temperature and field.
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How can we reduce the  peak temperature?How can we reduce the  peak temperature?

Quench Integral
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Quench Integral - 11 T
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VLHC - CC

• Decrease J
(larger cable, more copper)

• Fast current ramp down
(early quench detection, fast and effective heater action)  
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One Layer-Short
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Vmax= I0 RD
Vmax < 1-2 kV

No dump:
– Vtot=0 (Resistive and inductive voltages compensate over the magnet)
– High turn to turn voltage between the hot spot and cold zones
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Generic HFM quench studyGeneric HFM quench study

An analytical calculation of trends, varying 
• bore field
• aperture size
• Current
• Jc of Nb3Sn 
• JCU
• Heater coverage

d

R

Fixed parameters Value Unit
Bath temperature 4.5 K 
# of apertures 2  
Bronze in SC 25 % 
Insulation in cable 25 % 
copper RRR  50  
Peak / bore field 1.2  
IC degradation 10 % 
Operating margin 85 % 
τ correction factor 1.2  
Quench velocity 1 m/s
 

… when fixed Value Unit 
Bore field 10 T 
Oper. current 20 kA 
Total delay time 30 ms 
Bore diameter 40 mm 
JCU 2 kA/mm2

Jc at 12 T 3 kA/mm2

Magnet length 15 m 
Heater coverage 50 % area 
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StoredStored energyenergy densitydensity

Increasing the field and keeping all the other parameters fixed (I, JCU,…)

Increase 
number of 
turns and cable 
size 

Increase 
both total 
stored energy 
and coil 
volume0
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Peak temperature vs. field 
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1- Tpeak
does NOT 
depend on 
the current

2- Tpeak
does NOT 
increase with 
field
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Peak temperature vs. JPeak temperature vs. JCUCU and heatersand heaters
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• JCU is the 
parameter with the 
largest impact on 
quench protection. 

• The drop of Tpeak
with increased 
heater coverage is 
sharp for low HC.
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Quench simulation Quench simulation programsprograms

QLASA - developed by L. Rossi, et al. at INFN-LASA
- t=0  : “spontaneous” quench
- t=dt : normal zone propagation: ellipsoid
- t+dt : new layer & update of inner layers: Vol,T,R => update of total R, I, V

Quenchpro - developed by P. Bauer at Fermilab
- simpler program (using a uniform temperature in the coils and uniform field) 
- calculates the turn to turn inductance matrix, on the basis of the coordinates 

of all turns, to derive the turn to ground and turn to turn voltages. 

Both based on the adiabatic heat balance 
equation, the programs calculate peak 

temperatures in agreement to within ±10%.
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Quench simulation Quench simulation withwith QLASAQLASA

Cross-
section of 1 
coil in the 
solenoid 

geometry

r

y

r

Input 
points

Peak 
field

y

Mirror 
plane

Cross-section 
of the 

racetrack in 
the common 

coil geometry

Racetracks ⇒ solenoids
same cross section 

same volume
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Peak field = 10.25 T
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inner coil heaters only

Parameters HGQ-2 MQXB  
Aperture 90 70 mm 
Gradient 210 205 T/m 
Current 14.5 11.3 kA 

I max 16.5 - kA 
Inductance 4.7 3.5 mH/m

Stored energy 489 225 kJ/m 
 

Cable parameters 
N. of strands 42  
Strand diam. 0.7 mm 

Insulation thick. 0.18 mm 
Cu/NCu ratio 1.2  

RRR 50  
JCU 1645 A/mm2

Cross-section 24.3 mm2 
 

HGQHGQ--22
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HGQHGQ--22
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outer coil heaters only
half of outer coil heaters only

Heater parameters 25% 
coverage 

50% 
coverage  

Heater systems (+ redundancy) 2+2 4+4  
Capacitors per heater PS 3 3  

Capacitance per capacitor 4.7 4.7 mF 
Operating V / maximum V 350/500 350/500 V 

Peak heater power per surface 38 38 W/cm2

Peak current 150 150 A 
Number of strips per system 4 4  

Cu cladding 1:3 1:3  
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HGQHGQ--22
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Heater delay 5+25 5+25 m s
N. of heaters 2+2 4+4  

M ax. hot spot T 231 186 K  
M ax. bulk T 127 100 K  

M ax turn-to-ground V 407 78 V  
M ax. turn-to-turn V 30 22 V  
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Parametric quench studiesParametric quench studies

To find the conductor and quench-heater requirements to limit the 
peak temperature and the voltages in the coil during a quench

Peak temperature vs. total delay time
HC=50/100%, RRR=50, Cu/NCu=1.2/1.0 (cosθ /CC)
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costheta - 50%
CC
cosθ

Set 
temperature  
limit: 400 K 

Requirement:
τH < 40 ms
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Parametric quench studiesParametric quench studies

Heater coverage:
Fixed parameters: tH=40 ms, RRR=50, Cu/NCu=1.2/1.0 (cosθ/CC)

Peak Temperature Peak V to ground 

300

400

500

600

20 40 60 80 100
Heater coverage (% of turns)

T
 (K

)

T-costheta
T-CC
cosθ
CC

The voltages depend not only on the 
heater coverage %, but also on the 
position of the heaters.

3518 mid-plane turns1.87
7136 mid-plane turns0.98
100all 52 turns0.24CC
46inner layer only1.36
54outer layer only0.91
100all 48 turns0.30cosθ

turn % Heater positionV (kV)

Requirements: Heaters=50/100% 
cosθ/CC
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Parametric quench studiesParametric quench studies
T peak vs. RRR (Cu/NCu=1.2/1) and copper content (RRR=50)

tH=40 ms, HC=50/100% (cosθ /CC)

Opposite effects of 
resistance (R):
1- the lower R the 
lower the heat 
generation at the 
hot spot; 
2- the lower R the 
longer the decay 
time, which 
ultimately raises 
the peak T.
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Thermal stress studyThermal stress study

Cable tests:
To measure the critical current degradation directly as a 
function of peak temperature during a quench

Magnet quench test
• Quench parameters (quench velocities, heater 

efficiency…)
• Degradation with peak temperature

Quench simulation with FE stress 
analysis
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NbNb33Sn cable quench testSn cable quench test

Main goal : Study of Nb3Sn degradation as function of 
peak temperature

Experiment concept :

• Induce quench with a spot heater
• High current for a chosen delay time
• Temperature rise
• Cold magnet environment (or sample holder) ⇒ strain
• measure IC and repeat till IC degradation
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Spot heater

Voltage taps-Ic (20cm)

Experiment set upExperiment set up

Sample holder 
for NHMFL 
facility

B = 8 T
P = 20 MPa
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Thermal stressThermal stress

• Intrinsic pre-compression* : 0.28 % ; 
• Irreversible tensile intrinsic strain* : 0.4%
• Pre-strain at 400 K of 0.15 %, 
• Uni-axial longitudinal stress for constrained cable, fixed ends

=> ε(400K) = 0.175%

=> total intrinsic strain ~ 0.3% compressive

 )T(T
2
c)ε(T bathpeakpeak −⋅=

* Ekin, Private com., HP1-ITER IGC strand measured at MIT, 10/01.
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Test resultsTest results

Peak temperatures
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Summary of test results

• No degradation up to ~ 420 K (straight sample)

• No degradation up to ~ 350 K (bent sample)

• MIIts calculations with only Copper and ~15 % overestimation

• Turn to turn propagation time ~20 ms

Summary of test results

Next developments
• Temperature sensors
• Strain gages 
• FE model
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burned epoxy 

Temperature !Temperature !
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Simulation and FE stress analysisSimulation and FE stress analysis

GOAL: Thermo-mechanical analysis of the 
stress during the quench
METHOD: 
– FE model of the magnet : 
detailed, must represent the conductor and the insulation
– Detailed temperature distribution
– Simulation of the quench

• FE simulation
• External code

Stress concentration 
in the epoxy can 
cause cracks that 
might eventually 

degrade the magnet 
performance
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Quench tests at LBLQuench tests at LBL

 

Strands Cu/Sc Iss 
(A) 

Jc 
(A/mm2) 

Jcu 
(A/mm2) 

Bpk 
(T) 

20 60.5 8346 2736 1786 10.2 
 

- 1 spot heater per module in low field position 

- 1 V tap per splice (2 per module, 4 per magnet)

- 1 temperature sensor for each module

- resistive strain gauges (shell)

- Energy extraction trough dump resistor

- No quench protection heaters

- two different data loggers for data acquisition

- Estimated test time ∼1 / 2 weeks
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SummarySummary

The large stored energies and current densities of 
the high field Nb3Sn magnets, can cause high peak 
temperatures during the quench.
Rapid thermal expansion of conductor during the 
quench can result in permanent critical current 
degradation. 
It is necessary to define the maximum temperatures 
that can be accepted in the coils during a quench. 
– Experimentally: cable quench tests and racetrack
– Theoretically: quench simulation and FE model
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